If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+37x+20=0
a = 10; b = 37; c = +20;
Δ = b2-4ac
Δ = 372-4·10·20
Δ = 569
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(37)-\sqrt{569}}{2*10}=\frac{-37-\sqrt{569}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(37)+\sqrt{569}}{2*10}=\frac{-37+\sqrt{569}}{20} $
| 3.3+10m=7.84 | | 44d=6d | | X^3-x^2+2x-8000=0 | | x^2+4x+22=0 | | 3(p+3)+5=23 | | -7.9=-1.5+v/4 | | 41-(2x+7)=2(x+7)+x | | 3/10+g=4/5-3g | | 6y+9÷-2=-13y-3÷8 | | -x2-5x-24=0 | | 8(z+4)=8(z-2) | | 6v-6+1=7 | | 3r+8=13r+13 | | 2.33333333333+3m/4=3.58333333333 | | x^2+9x+13=-7 | | 8c=9c-5 | | 2(x+9)^2=40 | | 5x-10=3x-8 | | -1.9=-1.5+v/4 | | 20+n=995-4n | | (7/3)+(3m/4)=43/12 | | 12−.25r=2r+1 | | 36-2x=-x-2 | | 3^(6x-5)=48 | | 7/3+3m/4=43/12 | | 4x+3=4(5)+3 | | x2+x-4=0 | | s²+10s+3=0 | | 2x=2(5)= | | 11=x/4+7 | | 11=x/4=7 | | 3.3x+59.4=33.6-9.6x |